

3-WAY PRESSURE CONTROL VALVE With integrated control electric

Subplate mounting NG 6 – mounting surface to DIN 24 340 - C6 - 1 Pilot operated - 315 bar – up to 40 l/min

3-way pressure control valves control and limit a steppless adjustable pressure in the outlet stream. These valves are equipped with an integrated control solenoid. In connection with a pressure transducer suitable for the fast and precise regulation of the secondary pressure.

FEATURES

www.Schiedrum.com

- with integrated control electric
- service socket (must be ordered separately)
- Minimum set pressure for setting range < 1bar
- With secondary pressure protection
- With control port for remote control or pressure unloading of port A (must be locked, if the function is not required)
- If desired, with external control oil drain (mounting surface to DIN 24 340 A6 1)
- Standard sealing material Viton (FPM)
- Assembly on sub plates with pipe connections or control block
- Neutral position of the valve: connection A to T; P locked
- Floating time approx. 50 msec

Туре

686 BD

CHARACTERISTICS 1. General		
Symbol		
Type Design	686 BD 1A two stages; pilot control = seat valve Main control = piston-type valve	
Weight Mounting position Direction of volume flow Ambient temperature range	3,5 kg any, preferably vertical P to A or. A to T -10°C to +50°C	
2. Hydraulic Characteristics		
Rated pressure / max. pressure	Connection P, A and B= 315 barConnection T= 70 bar in case of external control oil drainConnection T= in case of internal control oil drain, depressurized and separately to the tank	
Min. pressure difference P to A Setting pressure range	Connection Y = depressurized and separately to the tank 15 bar 70 bar; 140 bar; 210 bar; 300 bar	
Min. setting pressure Rated volume flow Pressure volume flow function	< 1 bar 30 l/min see Fig. 3	
Hydraulic fluid Temperature range of hydraulic fluid Viscosity range	Hydraulik oil according to DIN 51 524 (1,2) -20°C to +70°C 15 - 350 mm²/s	
Control volume flow Contamination level / filtering	approx. 400 cm ³ /min Class 16/13 according to ISO 4406 or 7 according to NAS 1638 (recommended filter: min. retaining rate $\beta_{5-10} \ge 75$)	
3. Type of actuation	Electrically – proportional magnet position sensor	
3.1 Solenoid		
Type Type of voltage Rated voltage Rated current Limit cu Rated n Rated power	Simple solenoid - pressing, pressure resistant D.C. voltage 12 V 1.6 A 1.9 A R_{20} = 5.7 Ohm 14.6 W	
3.2 Position sensor		
Type Measuring system Sensitivity, adjustable Zero shift, electrically	pressure resistant inductive; principle: differential transformer 1.5 V/mm +/- 15% +/- 1 mm	
3.4 Type of protection (according to DIN 40.050)		
3.4 Type of protection (according to DIN 40 050) TP 65		
Schiedrum Hydraulik GmbH	9-74-686-0017 sheet 2/3 04/11	

4. Response characteristics	(Definition a	ccording to DIN 24 311)
Sensitivity Repeatability Range of inversion Hysteresis Volume flow signal function Time response	± 0.5 % ± 0.5 % ± 0.5 % ± 0.5 % see Fig. 2 see Fig. 1	<pre> from setting pressure value</pre>
CHARACTERISTICS		
Time response Fig. 1shows the step-function response of the pressure signal to a setting value jump of 10% to 90% and vice versa. Measured at a volume flow of 20 l/min. The values are extremely system- dependent.	Fig. 1	(%) the set of the set
Characteristic of the pressure signal function Fig. 2 shows the characteristic typical of the valve function pressure setting value. It given information on the linearity and the hysteresis.	for the	Pressure (%) of the setting Pressure range 25 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20
	Fig. 2	0 10 20 30 40 50 60 70 80 90 100 Setting value (%)
pa-Q-characteristic Fig.3 shows the control response of the valve for the secondary pressure at the different setting pressure ranges, dependent on the variable volume flow, at a primary pressure of 20 bar each above the setting pressure.		Setting value (70)
		317 300
	ne	226 210
		E 208
	ry e.	
	Fig. 3	67
		40 30 20 10 0 10 20 30 40 A to T P to A
Description of the valve		Q (L/min)

These valves, type 686 BD are double stage valves, consisting mainly of the main control part which is controlled by a pilot valve with the proportional actuating solenoid. The position of the solenoid inductor will seized by an integrated position indicator and controlled by the electronic to minimize hysteresis. This closed loop positioning system is controlled by a pressure control circle.

The valve is equipped with four or five ports, the main ports **P** and **A** for in- and outlet, port **T** to protection of the secondary circuit, port **B** and if desired **Y** for the separate control oil drain. For the valve type **internal control oil drain**, the control oil is let via **T**.

In order to prevent valve oscillations, we recommend according to the chosen control oil outlet - to conduct the corresponding line depressurized and trouble free, separately to the tank. We recommend the valve type with external contro oil drain since it is the best guarantee for a trouble free function.

Via port **B**, the valve can be unloaded and operated by externa remote control; **it must locked if the function is not required**. Yet, we recommend to provide this port in control blocks or sub plates, because the dampening characteristics of the valve can be changed via this port in case of system vibrations.

For applications in excess of the given specification, please contact Schiedrum.

All specified parameters are partially based on long user's experience and partly on measurements made in laboratories. The data are typical of the valve and can deviate in series. All measurements were carried out on a test stand with an oil viscosity of $36 \text{mm}^2/\text{sec}$ and a filter mesh of < 10 µm. All data given here should be used as description of the product only and they are not to understand as warranty in the sense of law.

Subject to chances for further development.

9-74-686-0017 sheet 3/3 04/11